Applying Machine Learning to Estimate the Effort and Duration of Individual Tasks in Software Projects
نویسندگان
چکیده
CONTEXT: Software estimation is a vital yet challenging project management activity. Various methods, from empirical to algorithmic, have been developed fit different development contexts, plan-driven agile. Recently, machine learning techniques shown potential in this realm but are still underexplored, especially for individual task estimation. OBJECTIVES: We investigate the use of predicting effort and duration software projects assess their applicability effectiveness production environments, identify best-performing algorithms, pinpoint key input variables (features) predictions. METHOD: conducted experiments with datasets various sizes structures exported three tools used by partner companies. For each dataset, we trained regression models tasks using eight algorithms. The were validated k-fold cross-validation evaluated several metrics. RESULTS: Ensemble algorithms like Random Forest, Extra Trees Regressor, XGBoost consistently outperformed non-ensemble ones across datasets. However, accuracy feature importance varied significantly datasets, Mean Magnitude Relative Error (MMRE) ranging 0.11 9.45 target variables. Nevertheless, even worst-performing estimates aggregated level showed good accuracy, MMRE = 0.23. CONCLUSIONS: Machine ensemble ones, seem be viable option estimating projects. quality relevant features may depend largely on characteristics available underlying when poor, at present due error compensation.
منابع مشابه
An Improved COCOMO based Model to Estimate the Effort of Software Projects
One of important aspects of software projects is estimating the cost and time required to develop projects. Nowadays, this issue has become one of the key concerns of project managers. Accurate estimation of essential effort to produce and develop software is heavily effective on success or failure of software projects and it is highly regarded as a vital factor. Failure to achieve convincing a...
متن کاملthe relationship between using language learning strategies, learners’ optimism, educational status, duration of learning and demotivation
with the growth of more humanistic approaches towards teaching foreign languages, more emphasis has been put on learners’ feelings, emotions and individual differences. one of the issues in teaching and learning english as a foreign language is demotivation. the purpose of this study was to investigate the relationship between the components of language learning strategies, optimism, duration o...
15 صفحه اولon the relationship between self- regulated learning strategies use and willingness to communicate in the context of writing
این تحقیق به منظور بررسی رابطه بین میزان استراتژیهای خود-تنظیم شده یادگیری و تمایل به ایجاد ارتباط دانشجویان زبان انگلیسی انجام شده است.علاوه بر این،روابط و کنش های موجود بین ریزسنجه های استراتژیهای خود-تنظیم شده یادگُیری ، مهارت نگارش و تمایل به برقراری ارتباط و همچنین تاٍثیرجنسیت دانشجویان زبان انگلیسی در استراتژیهای خود-تنظیم شده یادگیری و تمایل به برقراری ارتباط آنها مورد بررسی قرار گرفته شد.
15 صفحه اولinvestigating the interaction of language knowledge and strategic competence in the performance of efl learners on reading-to-write and writing-only test tasks
این مطالعه به دو روش کمی و کیفی و با هدف بررسی استراتژی های فراشناختی فراگیران زبان انگلیسی به عنوان زبان خارجی در دو آزمون نوشتن و نوشتن ترکیبی انجام پذیرفت. در بخش کمی برای سنجش میزان استراتژی های فراشناختی از یک پرسشنامه که بر اساس مدل بکمن و پالمر (1996) ساخته شده بود استفاده شد. پایایی و روایی سازه ی پرسشنامه هنگام مطالعه ی پایلوت و روایی محتوای آن با جمع آوری نظرات نُه متخصص در رشته سنجیده...
Designing software to estimate the relative interference between multiple tasks and determine its validity
The most commonly used empirical approach to address issues of attention constraint is evaluate the degree of interference in dual or multiple tasks. The purpose of this study was designing software to estimate the relative interference between multiple tasks and determine its validity in performance prediction of simultaneous multiple tasks. in order to assess the validity of software, 46 stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2023
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2023.3307310